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WEvered \\/hat is PageReank?

Lincoln

The PageRank
Algorithm

John Orr

Introduction

PageRank
Computation PageRank is an algorithm for ranking the importance of
Further issues Webpages

It was developed in the late '90’s by Larry Page and Sergey
Brin, at that time grad students at Stranford.
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WEVeta \\hat is the web?

Lincoln

The PageRank
Algorithm

John Orr

Introduction

bageRank The web is a distributed, linked collection of documents.

Commiiziitem This isn't as obvious as it sounds:

Further issues

@ HTML or other content types?
@ Static or dynamic?

@ HTTP(S) or other protocols?
°

Public or restricted?
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Introduction It's hard to tell how big, because estimates vary wildly and are
PageRank constantly changing.

Computation

What counts as a web page: a URL, or the content returned?
The “surface web” or the “deep web"?

Further issues

Google (2008) claimed to have identified 1 trillion URLs, but
they only index a fraction of those.

The size of the “indexed web" today is probably measured in
the 10's of billions.
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— A Google query on *ax finds over 25 billion results.
ageRan

Compuiziani A breadth-first search rooted at http://www.math.unl.edu
el found 21,000 internal pages. What percentage of UNL is the
Math Dept? What percentage of the web is UNL? Surely

20,000 x 50 x 10,000 = 10'°

is a huge underestimate.
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How does a search engine work?

Query-independent

Indexing Module

=
~m-

J

Indexes

Content Index Special-purpose indexes

Structure Index
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A Google query on “cat” found 591,000,000 results. A search
for “PageRank” got 81,000,000.

PageRank
Computation

Further issues

© Word/term frequency
@ Word/term context (hi1, h2, strong, etc.)
© Back-link counts

All very vulnerable to SEO spamming.
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T e PageRank — and other ranking algorithms, e.g., HITS — use
global link analysis.
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Further issues Let n = |W| (n ~ 1010)

Seek a single vector r € R™, with

Q>0
Q rlli=1

(i.e., stochastic), where each ; represents the relative
importance of page v;.
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Let A be the adjacency matrix of the directed graph W (i.e.,
a;j = 1 if v; — vj, otherwise zero).

Introduction

PageRank

Computation Let D = dzag(df7 e d;’{)

Further issues

Let Ag = D' A (allowing for non-invertibility)
Then
r=r1rAg

In other words, find an eigenvector (the eigenvector?) of Aq for
A=1
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O O Wi
O NI= O Wi
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Lincoln SIS

The PageRank
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John O . .
onn There are sure to be sinks in W.

Introduction

If W is a chain then

PageRank
Computation B 0 1 0 . 0 ]
Further issues 0 1 0 O
Ag=|00 0 1 0 - 0
- 0 0 -

which is nilpotent and so sp(A4p) = {0}

l.e., solutions to rAg = r do not exist.
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Introduction .
b W is not strongly connected or even connected.

ageRank

Computation

Further issues A’ *
Ao = { 0 A" }

The multiplicity of A = 1 is greater than 1.

l.e., solutions to rAg = r are not unique.
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Markov Process on W.

Introduction

s At each step the surfer clicks a link uniformly at random from

the links on her current page.

Computation

Further issues

If the page has no outlinks, pick a page uniformly at random
from W. The transition probabilities for this process are

1
A=Ay + =2
mn

where z is the indicator vector for the sinks (z; = 1 if d =0
and is 0 otherwise), and 1 = (1,1,...,1).



NebYaSl@ Example

Lincoln

The PageRank
Algorithm

John Orr

Introduction
PageRank
Computation

Further issues

O Nl= O Wi
O Nl= O Wi

0 0
111 1
_ — 4

—"_4 0 [1717171] 0
1
1 1

O] s 0]

11
o1
4 7
0 3
11
4 1



Weveed Random surfer model

Lincoln

The PageRank
Algorithm

John Orr

Introduction

PageRank The transition matrix
Computation
Further issues Al — AO + lle
n
-1 1 T

is a row-stochastic matrix.
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The stationary distribution of the process is the long-term

PageRank
- proportion of the time that the surfer will spend on each page.

Computation

bl  |f p = (p;) is the stationary distribution then

p = pAy

and so we are still seeking an eigenvector for A = 1, but now of
our modified matrix, A;.
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S If S is a (row) stochastic matrix then A\ = 1 is an eigenvalue.

Computation

Further issues

S17T =17,

In other words, 17 is a right eigenvector, and so there must
exist left eigenvectors too.
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Let P > 0 and let p be the spectral radius of P. Then. ..

o .
Q.
o .
Q.

PageRank
.. p Is positive and is an eigenvalue of P,

Computation

Further issues

.. p has left and right eigenvectors with positive entries,
.. p has algebraic & geometric multiplicity 1, and
.. all the other eigenvalues are less than p in magnitude.

Find a fixed point of Pz/||Pz||; on z; >0, > x; =1... O
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Introduction
PageRank So if P is a positive row-stochastic matrix, and x is a positive
Computation left eigenvector for p, then

Further issues

Izl = 21" = 2(P1") = (@P)1" = pe1” = p|jzl)

and so
p=1
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_ 1
Computation Al = DilA —+ *ZT].
n

Further issues
isn't positive.

(If A; were irreducible we could use the Perron-Frobenius
Theorem.)

It's the same issue as before; failure of (strong) connectedness.
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Introduction Imagine now at each step that the random surfer either. . .
PageRank
J— clicks a link uniformly at random from the links on her current

Further issues page

...orelse ...

with probability a jumps to a new page chosen uniformly at
random from W.

The probability « is called the teleportation constant.
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The new transition matrix is
PageRank

omputation — ]- 1
come Ay=(1—-a)(D'A+ =2T1)+a=1T1
n n

Further issues

This is often called the Google Matrix.
Clearly this is positive, stochastic.

Brin & Page (1998) report using o = 0.15 in early Google.
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0.0375 0.3208 0.3208 0.3208
0.2500 0.2500 0.2500 0.2500
0.0375 0.4625 0.0375 0.4625
0.2500 0.2500 0.2500 0.2500

Az

p=0.1683 0.3078 0.2160 0.3078 |
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PareRank We need to solve
geRan
Computation

pAy =1p or p(Ae — 1) =0

Further issues

Gauss-Jordan elimination is O(n?), or ~ 10%.

Moreover, it requires storage of the entire array, O(n?), or
~ 1020 bytes (1 petabyte ~ 10'2? bytes)
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PageRank Po = l 1
Computation n
Further issues pk+1 = pk‘AQ

so that pp = poAL.

Since py, is a product of row stochastic matrices, it is row
stochastic.

Thus, if py converges, it converges to the normalized
eigenvector (a.k.a., stationary distribution)
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The PageRank
Algorithm

John Orr By Perron’s Theorem, Ay is similar to a block Jordan matrix

Introduction

PageRank 1
Computation J>(\72n2)
Further issues J(m3)

where the eigenvalues of A, are
1>)\2>)\3>"'>)\N

each with multiplicity m;. (In particular, m; = 1.)
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Introduction

bR The powers of the Jordan blocks, (J/(\ml))k converge to Oy, xm;
ageRan 7

and the rate of convergence is O(\¥).

Computation

Further issues Thus

@ AL converges to 17p
@ pj. converges to p, (independent of py, in fact) and
© the rate of convergence is O(\5).
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Prt1 = PrAa

Introduction
(6%

PageRank = (1 — a)pk_DilA + pszl + 7pk1T1
n

Computation \ n , \ ,
Further issues O(n) O(n)

11—«

Most pages can be expected to contain a bounded number of
outlinks. Empirical studies suggest the average number of
outlinks per page is around 10. Thus A is sparce, and
computing pr D1 A is also O(n).

Each iteration is O(n) operations. All operations are
matrix-vector and from the form of the vectors (diagonal,
rank-1, and sparce) storage is also O(n).
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Brin & Page (1998) report that 52 iterations yield “reasonable
tolerance” on a 322 million link database.

Further issues

The following analysis casts light on the rapid convergence. ..
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John Orr If the eigenvalues of the stochastic matrix A, are

Introduction
PageRank {17)\2’)\37"‘7)\71}
Computation

then the eigenvalues of

Further issues

Ay = (1-a)A; + 2171
n

are
{1,(1 =)Ao, (1 —a)As,..., (1 —a)\,}

Corollary

The power method computation of the PageRank vector
converges O((1 — a)*).




e Power method

Bl Rate of convergence

The PageRank
Algorithm

o G Proof (Langeville & Meyer, 2005)

Introduction Observe 1
PageRank AllT = 1T and 7(1T1)1T — 1T
n

Computation

Further issues and so, wrt a basis that starts with 1,

Ay = (1-a)A; + 2171
n
1 =* 1 =%
—(1_0‘){0 B}J“O‘[o 0]

- [ (1) (1 —*a)B ]
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The web is constantly changing, and so rankings are not useful

Introduction unless they are stable under small perturbations of W.

PageRank
Theorem (Ng, Zheng, Jordan 2001)

Let G be the PageRank matrix defined on a directed graph W
and let p be its stationary distribution. Suppose W' is obtained
by changing the outlinks of vertices iy, 1o, ..., iy, and let G’
and p’ be the corresponding perturbations of G and p. Then

k
2 Zj:l Di;
(%

Computation

Further issues

Ip" — pll1 <
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Introduction “Intelligent surfer” transition matrix, A} with values computed
PageRank from server logs.

Computation

“Personalized teleportation vector”, v, gives

Further issues
(6]

(1—a)A] +—=1Tv
n

The complexity of the calculation makes genuinely personalized
vectors impractical.
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