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Ideals of upper triangular operators Statement of the problem

Let H := `2(N) and let {ek}∞k=1 be the standard basis. Let T be the
algebra of all (bounded) operators which are upper triangular with respect
to {ek}.

Question

What are the maximal two-sided ideals of T ?

All ideals are assumed two-sided.
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Ideals of upper triangular operators Statement of the problem

What would I like the answer to be?

Observe that D, the set of diagonal operators w.r.t. {ek} is *-isomorphic
to `∞(N), so we identify them. Write S for the set of strictly upper
triangular operators w.r.t. {ek}.

Fact

Let M be a maximal ideal of `∞(N) and let J := M+ S. Then J is a
maximal ideal of T .

Proof.

Write ∆(T ) for the diagonal part of T . Suppose T 6∈ J .
T −∆(T ) = J ∈ S ⊆ J and so ∆(T ) 6∈ J , hence ∆(T ) 6∈ M. Thus
D∆(T ) + M = I and so D(T − J) + M = I ∈ 〈T ,J 〉.
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Ideals of upper triangular operators Statement of the problem

The maximal ideals of `∞(N) are points in βN, the Stone-Cech
compactification of N, so this would give a good description of the
maximal ideals of T .

Question

Are all the maximal ideals of T of the form M+ S where M is a maximal
ideal of `∞(N)?
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Ideals of upper triangular operators Re-statement of the problem

Proposition

TFAE:

1 All the maximal ideals of T are of the form M+ S.

2 All the maximal ideals of T contain S.

3 No proper ideal of T contains an operator I + S, (S ∈ S).

Proof.

(1) ⇒ (2) ⇒ (3): Obvious.
(3) ⇒ (2): Contrapositive. Suppose J 6⊇ S is a maximal ideal of T .
Then J + S = T and so I = J − S .
(2) ⇒ (1): Let J be a maximal ideal of T . Since J ⊇ S, then also
J ⊇ ∆(J ). But ∆(J ) CD so let M⊇ ∆(J ) be a maximal ideal of D
and we saw M+ S is a maximal ideal of T – that contains J .
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Ideals of upper triangular operators Re-statement of the problem

Question

Is it possible for an operator of the form I + S (S strictly upper triangular)
to lie in a proper ideal of T ?

Just to be clear, an operator X fails to belong to a proper ideal of T iff we
can find A1, . . . ,An and B1, . . . ,Bn such that

A1XB1 + · · ·+ AnXBn = I
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Ideals of upper triangular operators Operators of the form I + S

In finite dimensions, all operators I + S are invertible.

Not so in infinite dimensions.

Let


0 1 0

0 1 0
0 1 0

. . .
. . .

. . .

 be the unilateral backward shift

Then I − U =


1 −1 0
0 1 −1 0

0 1 −1 0
. . .

. . .
. . .

. . .

 is not invertible
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Ideals of upper triangular operators Operators of the form I + S

Nevertheless this isn’t a counterexample.
It’s easy to see that I − U doesn’t lie in any proper ideal of T :

Let σ ⊆ N and let

Pσ := Proj (span{ek : k ∈ σ})

Note UP2N = P2N−1U and UP2N−1 = P2NU
Thus

P2N(I − U)P2N + P2N−1(I − U)P2N−1 = I

This simple observation connects us to a famous open problem known as
The Kadison-Singer problem or The Paving Problem.
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The Kadison-Singer Problem The paving problem

Let the standard atomic masa, D, and the projections, Pσ, be as defined
before.

Definition

Say that X ∈ B(H) can be “paved” if, given any ε > 0, there are pwd sets
σ1, . . . σn ⊆ N such that

σ1 ∪ · · · ∪ σn = N

and ∥∥∥∥∥∆(X )−
n∑

k=1

Pσk
XPσk

∥∥∥∥∥ < ε

Question (Paving Problem)

Can every operator in B(H) be paved?
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The Kadison-Singer Problem Application to maximal ideals of T

Proposition

If every operator can be paved, then no operator of the form I + S
(S ∈ S) can belong to a proper ideal of T .

Proof.

I + S can be paved by projections in D. So∥∥∥∥∥I −
n∑

k=1

Pσi (I + S)Pσi

∥∥∥∥∥ < 1

and
∑n

k=1 Pσi (I + S)Pσi is invertible in T .
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The Kadison-Singer Problem Extensions of pure states

In [KS59] Kadison and Singer studied “Extensions of Pure States”.
Let B ⊆ A be C∗ algebras. If φ is a pure state of B then it extends to a
state on A. Are such extensions unique?

Question (Kadison-Singer)

Let D be an atomic masa in B(H). Does every pure state of D have a
unique extension to a state of B(H)?
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The Kadison-Singer Problem Extensions of pure states

If M is a non-atomic masa in B(H) (i.e. L∞(0, 1)) then it has pure
states with non-unique extensions [KS59]. (In fact no pure states on
L∞(0, 1) extend uniquely [And79a].)

If D is an atomic masa in B(H) (i.e. `∞(N)) and φ is a pure state on
D, then φ ·∆ is a state on B(H). (Anderson [And79b] showed it is a
pure state.)

Is φ ·∆ the only extension of φ to a state of B(H)?
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The Kadison-Singer Problem Extensions of pure states

Proposition

TFAE

1 Every operator in B(H) can be paved.

2 Every pure state of D has a unique state extension to B(H).

Proof.

(1) ⇒ (2): Let φ̂ be a state extension of φ. Then φ̂ is a D-bimodule
map. Thus by paving X we can arrange

φ ·∆(X ) = φ̂ ·∆(X ) ∼ε φ̂

(
n∑

k=1

Pσi XPσi

)
=

n∑
k=1

φ(Pσi )
2φ̂(X ) = φ̂(X )
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The Kadison-Singer Problem Extensions of pure states

Lemma

φ̂ is a D-bimodule map.

Proof.

Let p ∈ D be a projection. Then φ̂(p) = φ(p) = φ(p)2 = 0, 1. If φ(p) = 0
then by Cauchy-Schwartz,

φ̂(px) = 0 = φ̂(p)φ̂(x)

If φ(p) = 1 then, again by Cauchy-Schwartz,

φ̂(px) = φ̂(x)− φ̂(p⊥x) = φ̂(x) = φ̂(p)φ̂(x)

(Extend to arbitrary a ∈ D by spectral theory.)
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The Kadison-Singer Problem Progress on the problem

Reid; [Rei71]

Anderson; [And79a, And79b]

Berman, Halpern, Kaftal, Weiss; [BHKW88]

Bourgain, Tzafriri; [BT91]

Weaver; [Wea04, Wea03]

Casazza, Christensen, Lindner, Vershynin; [CCLV05]

Casazza, Tremain “The paving conjecture is equivalent to the paving
conjecture for triangular matrices”; [CT]
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More upper triangular ideals One-term interpolation

Return to X = I + S ∈ T (S ∈ S).

We want to find Ai ,Bi such that A1XB1 + · · ·+ AnXBn = I .
How about solving AXB = I for A,B ∈ T ? Unfortunately. . .

Proposition

Let X ∈ T . There are A,B ∈ T with AXB = I iff X is an invertible
operator.
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We want to find Ai ,Bi such that A1XB1 + · · ·+ AnXBn = I .
How about solving AXB = I for A,B ∈ T ? Unfortunately. . .

Proposition

Let X ∈ T . There are A,B ∈ T with AXB = I iff X is an invertible
operator.

Proof.

If AXB = I let Pn := P{1,...,n} and note

Pn = (PnAPn) (PnXPn) (PnBPn) = (PnBAPn) PnXPn

since PnBPn is the (two-sided) inverse of PnAXPn in PnH. Taking
WOT-limits we see BAX = I and similarly XBA = I .
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More upper triangular ideals One-term interpolation

Return to X = I + S ∈ T (S ∈ S).
We want to find Ai ,Bi such that A1XB1 + · · ·+ AnXBn = I .
How about solving AXB = I for A,B ∈ T ? Unfortunately. . .

Proposition

Let X ∈ T . There are A,B ∈ T with AXB = I iff X is an invertible
operator.

So how about solving AXB + CXD = I?
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More upper triangular ideals Two-term interpolation

First express as a finite dimensional problem:

Question

Given an n× n matrix X = I + S (S strictly upper triangular), can we find
upper triangular matrices A, . . . ,D such that

AXB + CXD = I

where the max{‖A‖, . . . , ‖D‖} is bounded in terms of ‖X‖ but
independently of n?

John L. Orr (Univ. Nebr.) Maximal Ideals of Triangular Algebras May 17, 2007 18 / 41



More upper triangular ideals Two-term interpolation

First express as a finite dimensional problem:

Question

Given an n× n matrix X = I + S (S strictly upper triangular), can we find
upper triangular matrices A, . . . ,D such that

AXB + CXD = I

where the max{‖A‖, . . . , ‖D‖} is bounded in terms of ‖X‖ but
independently of n?

John L. Orr (Univ. Nebr.) Maximal Ideals of Triangular Algebras May 17, 2007 18 / 41



More upper triangular ideals Two-term interpolation

Lemma

Let X = I + S ∈ Mn(C) where S is strictly upper triangular. Then there
are A, . . . ,D ∈ Mn(C) such that AXB + CXD = I and
max{‖A‖, . . . , ‖D‖} ≤ ‖X‖.

Proof.

Assume for simplicity n is even. Let s1 ≥ s2 ≥ · · · ≥ sn be the singular
values of X . Since all si ≤ ‖X‖ and

∏n
i=1 si = det |X | = | det X | = 1, we

cannot have n/2 of the si satisfying si < 1/‖X‖. For in that case

1 = det X < ‖X‖n/2/‖X‖n/2 ≤ 1.

Thus the first n/2 of the si are at least ‖X‖−1. There are o.n. bases
ui , vi (1 ≤ i ≤ n) such that Xui = sivi . Let A,B be matrices mapping
vi 7→ (1/si )ei and ei 7→ ui for 1 ≤ i ≤ n/2. Then AXB is the projection
onto span{e1, . . . e n

2
} and ‖A‖, ‖B‖ ≤ s−1

n
2
≤ ‖X‖. Likewise get CXD as

the projection onto span{e n
2
+1, . . . en} with norm control.
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cannot have n/2 of the si satisfying si < 1/‖X‖. For in that case

1 = det X < ‖X‖n/2/‖X‖n/2 ≤ 1.

Thus the first n/2 of the si are at least ‖X‖−1. There are o.n. bases
ui , vi (1 ≤ i ≤ n) such that Xui = sivi . Let A,B be matrices mapping
vi 7→ (1/si )ei and ei 7→ ui for 1 ≤ i ≤ n/2. Then AXB is the projection
onto span{e1, . . . e n

2
} and ‖A‖, ‖B‖ ≤ s−1

n
2
≤ ‖X‖. Likewise get CXD as

the projection onto span{e n
2
+1, . . . en} with norm control.
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More upper triangular ideals Two-term interpolation

But – although we used the fact X is upper triangular – we lost all control
on triangularity of A, . . . ,D.

At least we see there is no spectral obstruction to a two-term
decomposition. Might there be other obstructions? Index perhaps?

Question

Given X = I + S (S ∈ S), are there A, . . . ,D ∈ T such that
AXB + CXD = I?
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More upper triangular ideals Filters

Suppose now that there is a maximal ideal J of T that contains
X = I + S (S ∈ S) and deduce some consequences.
Let

Σ = {σ ⊆ N : I − Pσ ∈ J }
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More upper triangular ideals Filters

Proposition

Let
Σ = {σ ⊆ N : I − Pσ ∈ J }

Then

1 Σ is a filter.

2 Σ contains all cofinite subset of N.

3 σ ∈ Σ ⇒ σ + 1 ∈ Σ.

4 Σ is not an ultrafilter.

Proof.
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Proof.

If σ ∈ Σ and τ ⊇ σ then Pτ c = Pτ c Pσc ∈ J .
If σ1, σ2 ∈ Σ then P⊥

σ1∩σ2
= Pσc

1∪σc
2

= Pσc
1
+ Pσc

2
− Pσc

1
Pσc

2
.
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Then

1 Σ is a filter.

2 Σ contains all cofinite subset of N.

3 σ ∈ Σ ⇒ σ + 1 ∈ Σ.

4 Σ is not an ultrafilter.

Proof.

For each k, P{k} = P{k}XP{k} ∈ J so {k}c ∈ Σ, a filter.
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Neither 2N nor 2N− 1 can be in Σ for then its complement is in Σ also.
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Nest Algebras Definitions

Nest algebras

Definition (Ringrose, [Rin65])

Let H be a Hilbert space and N a complete chain of subspaces containing
0 and H. This is called a nest. Define the nest algebra, Alg(N ), for a
given nest N to be

Alg(N ) := {X ∈ B(H) : XN ⊆ N ∀N ∈ N}

See Davidson, Nest Algebras, [Dav88].
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Nest Algebras Examples

Example

Let e1, . . . , en be the standard basis for Cn. Let Ni := span{e1, . . . , ei}
and N := {0,Ni : 1 ≤ i ≤ n}.
Then Alg(N ) = Tn(C).

John L. Orr (Univ. Nebr.) Maximal Ideals of Triangular Algebras May 17, 2007 24 / 41



Nest Algebras Examples

Example

Let ei (i ∈ N) be the standard basis for H = `2(N). Let
Ni := span{e1, . . . , ei} and N := {0,Ni ,H : i ∈ N}.
Then Alg(N ) is the algebra of all bounded operators which are upper
triangular w.r.t. {ei}.
In other words,

Alg(N ) = T
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Nest Algebras Examples

The Volterra Nest

Example

Let H = L2(0, 1). For each t ∈ [0, 1] let

Nt := {f ∈ L2(0, 1) : f is supported a.e. on [0,t]}

In other words, P(Nt) is multiplication by χ[0,t]. Clearly
N := {Nt : t ∈ [0, 1]} is a nest.

Remark

Alg(N ) contains the Volterra integral operator,

f 7−→
∫ 1

x
f (t) dt
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Nest Algebras Classification and similarity

Classification of nest algebras

Theorem (Ringrose, [Rin66])

Let φ : Alg(N1) → Alg(N2) be an algebraic isomorphsim. Then there is an
invertible operator S ∈ B(H1,H2) such that

φ(T ) = STS−1 = AdS(T ) for all T ∈ Alg(N1)

Now φ = AdS iff {SN : N ∈ N1} = N2. So classifying nest algebras up
to isomorphism means classifying nests up to similarity.
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Nest Algebras Classification and similarity

Theorem (Erdos, [Erd67])

Nests are completely classified up to unitary equivalence by

An order type

A measure class, and

A multiplicity function

C.f. Unitary invariants for bounded selfadjoint operators (spectrum,
measure class, mutliplicity function).

Question

Any similarity transform preserves order type. Must it also preserve
multiplicity and/or measure class?
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Nest Algebras Classification and similarity

Let N be the Volterra nest on H = L2(0, 1). I.e. N = {Nt : t ∈ [0, 1]}
where

Nt = {f : f (x) = 0 a.e. x 6∈ [0, t]}

Example

The map Nt 7−→ Nt ⊕ Nt preserves order type and measure class, but not
spectral multiplicity.

Example

Let f : [0, 1] → [0, 1] be increasing, bjijective, not absolutely continuous.
The map Nt 7−→ Nf (t) preserves order type and multiplicity, but not
measure class.
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Nest Algebras Classification and similarity

Theorem (Davidson, [Dav84])

Let N1,N2 be nests and θ : N1 → N2 be and order isomorphism. There is
an invertible operator S such that

θ(N) = SN for all N ∈ N1

iff θ is dimension-preserving, i.e. if

dim θ(N)	 θ(M) = dim N 	M for all M < N in N1
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Nest Algebras Classification and similarity

Corollary

Both of the previous two examples are implemented by invertibles!

Corollary

Nest algebras are classified up to isomorphism by “order-dimension” type.

Proof uses Voiculescu’s notion of approximate unitary equivalence.

Based on N. T. Andersen’s study of unitary equivalence of
quasi-triangular algebras

Slightly earlier result of D. Larson [Lar85] showed all continuous nests
are similar.
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Nest Algebras Algebraic implications of Similarity Theory

Proposition

The commutator ideal of a continuous nest is the whole algebra.

Proof.

By the Similarity Theorem, Alg(N ) ∼= Alg(N ⊕N ) = M2(Alg(N )) and so[(
0 1
1 0

)(
0 0
1 0

)
−
(

0 0
1 0

)(
0 1
1 0

)]2

= I
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Nest Algebras Algebraic implications of Similarity Theory

Corollary

Let N be the Volterra nest. Then there is no ideal S C Alg(N ) such that
Alg(N ) = D(N )⊕ S.

Proof.

D(N ) = N ′ = N ′′ is abelian so S would contain the commutator
ideal.
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Nest Algebras Algebraic implications of Similarity Theory

Proposition

Alg(N ) has non-zero idempotents which are “zero on the diagonal”, i.e.

P(Nbi
− Nai ) Q P(Nbi

− Nai ) = 0 where
∑

i

P(Nbi
− Nai ) = I

Proof.

Write the Cantor middle-1
3 set as K = [0, 1] \

⋃∞
i=1(ai , bi ). Let

f : [0, 1] → [0, 1] map K to a non-null set. By the Similarity Theorem,
SNt = Nf (t). Let P = Mχf (K)

and Q = SPS−1.
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Continuous nest algebras

Interpolation Theorem

Let N be the Volterra nest. For a Borel set S ⊆ [0, 1] write E (S) = MχS
.

Define the diagonal seminorm

ix(T ) := inf{‖P(Nx 	 Nt)TP(Nx 	 Nt)‖ : t < x}

Theorem (Interpolation Theorem, [Orr95])

Let T ∈ Alg(N ), a > 0, and

S := {x : ix(T ) ≥ a}

Then there are A,B ∈ Alg(N ) such that ATB = E (S).
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Continuous nest algebras

Proof uses:

Larson-Pitts [LP91] classification of idempotent equivalence

Construction of “zero-diagonal” idempotents which sum to an
idempotent that is equivalent to E (S)

Factorization of “zero-diagonal” idempotents through T
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Continuous nest algebras Ideals of continuous algebras

Corollary

Let N be a continuous nest and X ∈ Alg(N ). TFAE:

1 There are A1 . . . , An and B1, . . . ,Bn in Alg(N ) such that

A1XB1 + · · ·+ ANXBn = I .

I.e. X does not belong to any proper ideal of Alg(N ).

2 There are A,B ∈ Alg(N ) such that AXB = I .

3 it(X ) ≥ a > 0 for all 0 ≤ t ≤ 1.
I.e.

inf{‖P(Nt 	 Ns)TP(Nt 	 Ns)‖ : 0 ≤ s < t ≤ I} > 0

Compare this with T where:

3. is analgous to X = I + S

We saw 1. 6⇔ 2.

We could not settle whether a version of 2. with two terms might be
possible.
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Continuous nest algebras Ideals of continuous algebras

Consequences of the Interpolation Theorem include:

Identification of maximal off-diagonal ideals and constructions of
maximal triangular algebras [Orr95]

Classification of the maximal ideals of continuous nest algebra and
the lattice they generate [Orr94]

The invertibles are connected in many nest algebras [DO95, DOP95]

Description of epimorphisms of nest algebras [DHO95]

Classification of the automorphism invariant ideals of a continuous
nest algebra [Orr01, Orrar]
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Continuous nest algebras Epimorphisms

Davidson-Harrison-Orr, [DHO95] described “almost” all epimorphisms
between nest algebras. Essentially one case was left open:

Question

Does there exist an epimorphism φ : T → B(H)?

Fact

If so, then ker φ contains an operator I + S (S ∈ S).

Proof.

The commutator ideal of T is S and the commutator ideal of B(H) is
B(H). Thus φ(S) = I = φ(I ) and so I − S ∈ ker φ.
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Proof.

The commutator ideal of T is S and the commutator ideal of B(H) is
B(H). Thus φ(S) = I = φ(I ) and so I − S ∈ ker φ.
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Bibliography and other questions Stable rank

Definition

The Bass stable rank of an algebra is the smallest n such that whenever
(g1, . . . , gn+1) generate the algebra as a left-ideal then we can find ai such
that

(g1 + b1gn+1, g2 + b2gn+1, . . . gn + bngn+1)

also generate the algebra as a left ideal.

Question

What is the Bass stable rank of T ?

Theorem (Arveson, [Arv75])

G1, . . . ,Gn generate T as a left ideal iff

G ∗
1 P⊥

k G1 + · · ·+ G ∗
n P⊥

k Gn ≥ aPk
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