Interval Analysis Grading of
On-Line Homewor k

John L. Orr
jorr@math. unl . edu

University of Nebraska—Lincoln

| ntroduction

Joint work with Stephen Scott (UNL) and Travis
Fisher (UNL & PSU).

| ntroduction

Joint work with Stephen Scott (UNL) and Travis
Fisher (UNL & PSU). Lecture plan:

Describe practical problem from
mathematical software development

| ntroduction

Joint work with Stephen Scott (UNL) and Travis
Fisher (UNL & PSU). Lecture plan:

Describe practical problem from
mathematical software development

Introduce interval analysis concepts

| ntroduction

Joint work with Stephen Scott (UNL) and Travis
Fisher (UNL & PSU). Lecture plan:

Describe practical problem from
mathematical software development

Introduce interval analysis concepts
Describe our solution to the problem

| ntroduction

Joint work with Stephen Scott (UNL) and Travis
Fisher (UNL & PSU). Lecture plan:

Describe practical problem from
mathematical software development

ntroduce interval analysis concepts
Describe our solution to the problem

Describe a solution to a related mathematical
oroblem

| ntroduction

Joint work with Stephen Scott (UNL) and Travis
Fisher (UNL & PSU). Lecture plan:

Describe practical problem from
mathematical software development

ntroduce interval analysis concepts
Describe our solution to the problem

Describe a solution to a related mathematical
oroblem

Evaluation and results

Statement of the Problem

Computer grading of students’ answers to
mathematical questions.

Example: In response to “Differentiate y = xe”
the student enters

re' + e’
but the stored answer in the guestion bank Is
(14 x)e”

Are the two answers equivalent?

Context of the Problem

We were developing software for on-line delivery
of student assessment.

Support multiple choice, fill-in-blank,
Interactive Flash questions, etc

Multiple, reworkable assignments with
different algorithmically-generated
parameters

Vital to be able to grade mathematical
guestions on content

Context of the Problem

Our algorithms are now used in
Brownstone’'s EDU,
Wiley’s eGrade,
Prentice Hall's PHGA,
McGraw-Hill's Netgrade and MHHM,
Freeman’s iSolve,
Maplesoft’s Maple T.A.

The Zero-Equivalence Problem

Problem: Given two functions f and g, determine
whether f(z) = g(z) Vz € R.

Equivalently, given an expression f, determine
whether f(z) =0 Vz € R.

The Zero-Equivalence Problem

Problem: Given two functions f and g, determine
whether f(z) = g(z) Vz € R.

Equivalently, given an expression f, determine
whether f(z) =0 Vz € R.

Possible solutions:
Symbolic manipulation

The Zero-Equivalence Problem

Problem: Given two functions f and g, determine
whether f(z) = g(z) Vz € R.

Equivalently, given an expression f, determine
whether f(z) =0 Vz € R.

Possible solutions:
Symbolic manipulation
Numerical evaluation

The Zero-Equivalence Problem

Problem: Given two functions f and g, determine
whether f(z) = g(z) Vz € R.

Equivalently, given an expression f, determine
whether f(z) =0 Vz € R.

Possible solutions:
Symbolic manipulation
Numerical evaluation

Caviness, 1970: Undecidable for functions
built from 1, 7, +, —, X, +, x, sin(x), |z|.

Monte-Carlo M ethods

Method: Evaluate f(x) and g(x) at a set of
random points and compare.

Not always correct if f # g
Always correctif f = g

Monte-Carlo M ethods

Method: Evaluate f(x) and g(x) at a set of
random points and compare.

Not always correct if f # g
Always correct if f = g¢g...oris it?

Monte-Carlo M ethods

Method: Evaluate f(x) and g(x) at a set of
random points and compare.

Not always correct if f # ¢
Always correct if f = g...oris it?
Rounding error problems

Monte-Carlo M ethods

Method: Evaluate f(x) and g(x) at a set of
random points and compare.

Not always correct if f # ¢
Always correct if f = g...oris it?
Rounding error problems

One-sided error would be acceptable in this appli-
cation, so we wanted to overcome rounding errors

Review Floating Point Arithmetic

IEEE-754 64 bit floating point number

pon

Review Floating Point Arithmetic

IEEE-754 64 bit floating point number

pon

Sign bit, S = {0,1}

Review Floating Point Arithmetic

IEEE-754 64 bit floating point number

pon

Sign bit, S = {0,1}
Exponent, 0 < E < 211 — 1 = 2047

Review Floating Point Arithmetic

IEEE-754 64 bit floating point number

pon

Sign bit, S = {0,1}
Exponent, 0 < E < 211 — 1 = 2047
Mantissa, 0 < M < 2°2 — 1

Review Floating Point Arithmetic

IEEE-754 64 bit floating point number

pon

Sign bit, S = {0,1}

Exponent, 0 < E < 211 — 1 = 2047
Mantissa, 0 < M < 2°? — 1

I =01I1f E=0; I=1otherwise

Review Floating Point Arithmetic

IEEE-754 64 bit floating point number

pon

Sign bit, S = {0,1}

Exponent, 0 < E < 211 — 1 = 2047
Mantissa, 0 < M < 2°? — 1

I =01I1f E=0; I=1otherwise

T = (_1)5(] 14 2—52M) w 9E—-1022—-1

Review Floating Point Arithmetic

For example,

245 = 49 x 271

— 110001 x 10!
— 1.10001 x 10°
= (=15 427520 x 2E—1023

sitgn exponent mantissa

— 0 { 10000000100 | 10001000

° ° ° ° ° ° ° ° °
Interval Analysis Grading of On-Line Homework — p.9

Review Floating Point Arithmetic

Rounding errors, e.g. 0.1 + 0.2 # 0.3

sign exponent mantissa

0.1 — 001111111011 | 1001100110011001100110011001100110011001100110011010

— 0.00011001100110011001100110011001100110011001100110011010 (base 2)

stgn exponent mantissa

0.2 001111111100 | 1001100110011001100110011001100110011001100110011010

= 0.0011001100110011001100110011001100110011001100110011010 (base 2)

So, adding 0.00011001100110011001100110011001100110011001100110011010
+ 0.0011001100110011001100110011001100110011001100110011010

= 0.01001100110011001100110011001100110011001100110011001110

which is rounded to

0.010011001100110011001100110011001100110011001100110100

° ° ° ° ° ° ° ° °
Interval Analysis Grading of On-Line Homework — p.10

Review Floating Point Arithmetic

Rounding errors, e.g. 0.1 + 0.2 # 0.3

sign exponent mantissa

(0.1 4+0.2) — 001111111101 | 0011001100110011001100110011001100110011001100110100

— 0.010011001100110011001100110011001100110011001100110100 (base 2)

stgn exponent mantissa

0.3 +— 001111111101 | 0011001100110011001100110011001100110011001100110011

= 0.010011001100110011001100110011001100110011001100110011 (base 2)

These differ by one ULP.

° ° ° ° ° ° ° ° °
Interval Analysis Grading of On-Line Homework — p.11

Interval Analysis

Moore, 1966: Replace numbers with intervals

Interval Analysis

Moore, 1966: Replace numbers with intervals

X =

y:

.
L LY

vyt

Interval Analysis Grading of On-Line Hol

mework — p.12

Interval Analysis

Moore, 1966: Replace numbers with intervals

— :w_,y+:

y =y ,y"
x+y=[z"+y ,v" +y]

Interval Analysis Grading of On-Line Homework — p.12

Interval Analysis

Moore, 1966: Replace numbers with intervals

S — :m_,er:

y =y ,y"
x+y=[z"+y 2" +y"]
xxy=[z"y a7y (v ,y" >0

Interval Analysis Grading of On-Line Homework — p.12

Interval Analysis

Moore, 1966: Replace numbers with intervals

X =
y:
X+Yy =

X Xy =

.
L LY

vyt
Ty, oy

7y ,xy"] (z7,y” > 0)

f(x1, . @n) = 4f(21, .-y Tn) 0 T € X4}

Interval Analysis

In practice, use rounded machine arithmetic

Interval Analysis Grading of On-Line Homework — p.13

Interval Analysis

In practice, use rounded machine arithmetic

X =

y:

.
L LY

vyt

Interval Analysis Grading of On-Line

Homework — p.13

Interval Analysis

In practice, use rounded machine arithmetic

X =
y:
X+Yy =

.
L LY

vyt

Interval Analysis Grading of On-Line

Homework — p.13

Interval Analysis

In practice, use rounded machine arithmetic

X =
y:
X+Yy =

X Xy =

.
L LY

vyt

T X,y LT X,y

Interval Analysis Grading of On-Line

Homework — p.13

Interval Analysis

In practice, use rounded machine arithmetic

— :m_,er:

y =y ,y"
X+y=[z" +,y 2zt +H,y"

x Xy =z~ X,y 2t x,yt] (z7,y" >0)

etc

Interval Analysis Grading of On-Line Homework — p.13

Interval Analysis

Moral: Using rounded machine interval
arithmetic, the true result is always contained In
the computed interval.

So, if the intervals U = f(x) and V = f(y) are
disjoint, then f and ¢ are guaranteed different.

| nterval Arithmetic Solution

Algorithm 1:

start with TRIALS equal to O
repeat until TRIALS > MAXTRI ALS
assign random val ues to each variable in f and g
let U be the rounded interval evaluation of f under those assignnents
l et V be the rounded interval evaluation of g under those assignnents
if UNnVvV =20
return FALSE (the functions cannot be equal)
I ncrenment TRI ALS
return TRUE (if cannot denonstrate that f and g differ, assune they are equal)

° ° ° ° ° ° ° ° °
Interval Analysis Grading of On-Line Homework — p.15

Using Interval Arithmetic

A Related Problem

Determine whether f(x) and g(x) differ by a
constant.

E.g. The student is asked to integrate sin(2z).

| ntegratesin(2x)

One possible route Is:

1
/sin(Qm) dr = 5 cos(2z) + C

| ntegratesin(2x)
One possible route Is:
/ sin(2z) dz = —% cos(22) + C
but another valid approach is
/ in(2z) dr — / 2 sin(z) cos(x) da

= /23 ds = sin*(z) + C

|ntegratesin(2x)

Moral: Even neglecting the constant of integra-
tion, two different approaches to integration can
give answers that differ by a constant (1, in this

case).

| nterval Arithmetic Solution

Algorithm 2:

start with TRIALS equal to O and | NTERSECTI ON equal to [—oo, oc]
repeat until TRIALS > MAXTRI ALS
assign random val ues to each variable in f and g
let U be the rounded interval evaluation of f under those assignnents
l et V be the rounded interval evaluation of g under those assignnents
| et | NTERSECTI ON equal INTERSECTION N (U —,, V')
i f | NTERSECTION = ()
return FALSE (we have found a m ss)
I ncrenment TRI ALS

return TRUE (there is still a range of constants by which f and g mght differ)

° ° ° ° ° ° ° ° °
Interval Analysis Grading of On-Line Homework — p.20

| nterval Arithmetic Solution

Evaluation

Evaluated using 8,000 responses to Gateway
Exam questions.

Compared student responses with “correct”
responses.

Performed same comparison using Maple’s
eval b(simplify(f-g)=0)

Evaluation

Maple |A Monte-Carlo
sinplify Algorithm
f=g always right

f #£ g always right

Evaluation

Maple |A Monte-Carlo
sinplify Algorithm
f=g always right

f #£ g always right

Moral: If the two checks agree, then they must be
right!

Evaluation

We found only 4 discrepancies out of 8,000

Hand-verified these and found IA
Monte-Carlo method was correct in all cases

Summary

|A Monte-Carlo solution to Zero Equivalence
problem is:

Interval Analysis Grading of On-Line Homework — p.25

Summary

|A Monte-Carlo solution to Zero Equivalence
problem is:

very fast

Interval Analysis Grading of On-Line Homework — p.25

Summary

|A Monte-Carlo solution to Zero Equivalence
problem is:

very fast
very accurate

Interval Analysis Grading of On-Line Homework — p.25

Summary

|A Monte-Carlo solution to Zero Equivalence
problem is:

very fast
very accurate
with guaranteed one-sided error

Interval Analysis Grading of On-Line Homework — p.25

	Introduction
	Statement of the Problem
	Context of the Problem
	Context of the Problem
	The Zero-Equivalence Problem
	Monte-Carlo Methods
	Review Floating Point Arithmetic
	Review Floating Point Arithmetic
	Review Floating Point Arithmetic
	Review Floating Point Arithmetic
	Interval Analysis
	Interval Analysis
	Interval Analysis
	Interval Arithmetic Solution
	Using Interval Arithmetic
	A Related Problem
	Integrate $sin (2x)$
	Integrate $sin (2x)$
	Interval Arithmetic Solution
	Interval Arithmetic Solution
	Evaluation
	Evaluation
	Evaluation
	Summary

