NAME:

This exam should have 5 pages; please check that it does.

Question:	1	2	3	4	5	6	Total
Points:	16	26	10	12	16	20	100
Score:							

1. The population P in thousands of Houston, Texas from 1980 through 2005 can be modeled by

$$
P=1576 e^{0.01 t}
$$

where $t=0$ corresponds to 1980 .
(a) (8 points) According to the model, what was the population of Houston in 2005?
(b) (8 points) According to the model, in what year will Houston have a population of $2,500,000$? (Hint: Remember P is the population in thousands.)
2. The demand function for a product is $p=450-0.25 x$.
(a) (5 points) What price should you set, to get sales levels of 1,000 units?
(b) (5 points) Find the revenue function, R.
(c) (4 points) What sales level, x, maximizes R ?
(d) (4 points) What price, p, maximizes R ?
(e) (4 points) Find the elasticity η for this product.
(f) (4 points) Use your answer to confirm that the product has unit elasticity when the revenue is maximized.
3. (a) (5 points) The profit function for a product is $P=-0.5 x^{3}+2500 x-6000$. Find the differential $d P$.
(b) (5 points) A business analyzes its revenues R and calculates the differential $d R$ to be

$$
d R=(30-0.3 x) d x
$$

If the current sales level is $x=50$, what change in revenues do you estimate for an increase in sales of $d x=1$?
4. After t years, the remaining mass y (in grams) of 16 grams of a radioactive element is given by

$$
y=16\left(\frac{1}{2}\right)^{t / 25}
$$

(a) (6 points) What is the half-life of the element?
(b) (6 points) How much remains after 100 years?
5. (a) (8 points) How much money will you have if you invest $\$ 10,000$ at 5% interest compounded quarterly for 20 years?
(b) (8 points) How much money will you have if you invest the $\$ 10,000$ at 5% interest compounded continuously for 20 years?
6. Find $\frac{d y}{d x}$ for the following:
(a) (5 points) $y=e^{4 x^{2}}$
(b) (5 points) $y=\left(x^{2}+2\right) e^{-3 x}$
(c) (5 points) $y=x^{2} \ln (x)$
(d) (5 points) $y=\frac{\ln (x)}{x^{2}+1}$

