 The program is initially configured to work with a distribution that has
50% probability of outcome "0" and 50% probability of outcome "1" (e.g. flipping
a coin). Also, the avarage is initially over only a single trial, so that,
as the program starts, it is plotting the histogram of outcomes of repeatedly
performing a fair "01" distribution.
 Click "Go" to start the program, and observe how, as the results of trials accumulate,
the histogram shows the number of "0" outcomes is roughly equal to the number of
"1" outcomes. The graph will automatically rescale itself to accommodate the histogram as the
number of trials grows.
 Use the "Settings..." button to bring up a popup panel that controls all
the other settings of the applet. Changes only take effect after you press the
green check button at the bottom of the panel.
The rest of the instructions describe the
features you can set on this popup panel.
 The "Distribution" tab: You can experiment with other probability distributions than
5050. Click on the
"Distribution" tab in the popup, and edit the probabilities in the right hand column.
You can add more outcomes than just "0" and "1", by pressing the "+" button
(or delete outcomes with the "" button).
 The "View" tab:
You can alter the horizontal scale of the graph by changing xMin and xMax to get a
closer view of the histogram. The vertical scale adjusts itself automatically to
accommodate the histogram.
 The "Sampling" tab:
Initially the histogram displays the distribution of outcomes of repeatedly
performing a single trial. Experiment with entering "2" into the
"Number of samples to average" field. With the underlying probability still
5050, this now shows the outcomes of repeatedly preforming two
trials (flipping a coin twice, say) and averaging the results (where a head is a 0
and a tail is a 1). Of course the possible averages are 0, 1/2 and 1, and the three
columns that you see in the histogram reflect that.
Try setting the number of samples to be 5, 10, 20 or 100.
In those cases there will be 6, 11, 21, or 101
strips between 0.0 and 1.0, corresponding to all the possible values of the averages.
Observe how when n is large, the histogram evolves to a shape close to
the normal curve. (It may help to restrict the x range by changing
xMin and xMax on the "View" tab.)
Observe how even if you start with a very skew distribution, when you make
the number of samples being averaged big, the distribution
of average values always ends up looking normal. (Remember
you set the distribution in the "Distribution" panel, and you can
always get a picture of the underlying distribution by running the program with
the number of averages set equal to 1.)
